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Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy 
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Abstract. We write down the recursion operator which defines the class of integrable 
non-linear evolution equations ( N E E )  associated with a spectral problem (SP) for matrices 
of rank 2 depending quadratically on the spectral parameter. Then we show the existence 
of four different transformations which transform the given SP into the well known one of 
Zakharov and Shabat ( z s ) ;  by composing these transformations we recover, among others, 
the so-called elementary Backlund transformations for the zs SP. Under some restrictions, 
one is able to prove the complete equivalence of the given class of N E E  to the one associated 
with the zs SP. 

1. Introduction 

A few years ago one of the authors (Levi 1981) introduced a new spectral problem ( S P )  

where A is a complex parameter, ( r ,  q )  are two (x, r)-dependent fields, (1, = $(x, t ;  A )  
is a matrix wavefunction depending parametrically on t and, by a subscript, we mean 
partial differentiation. For this SP the generalised Volterra equation (Wadati 1976) for 
an infinite number of interacting predator-prey species appears as a Backlund transfor- 
mation (BT) .  

Levi in 1981 has been able, using the Wronskian technique (Calogero 1976) to 
obtain a hierarchy of non-linear evolution equations ( N E E )  and ET when the fields 
( q ( x ,  t ) ,  r ( x ,  t ) )  go asymptotically to a constant value. Later on Levi et a1 (1984a), 
considering the N E E  associated with the SP (1.1) for ( q ( x ,  t ) ,  r ( x ,  t ) )  vanishing 
asymptotically, have shown that one could introduce a transformation matrix T which 
mapped the SP (1.1) into the well known Zakharov-Shabat (2s) SP (Zakharov and 
Shabat 1972) 

where p is a spectral parameter, (U, U )  are two ( x ,  t)-dependent fields and #J = #J(x, t ;  p )  
is a matrix wavefunction. However, they could not find the recursion operator nor 
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did they try to prove, using the known transformation T, the equivalence of the 
hierarchies one could construct starting from the two given SP. 

In a recent report, Li et a1 (1986) have given five different classes of NEE associated 
with different SP described by matrices of rank 2 and linear in the spectral parameter 
such that all are gauge equivalent to the SP (1.2). So it seemed interesting to prove 
this equivalence in this case as well, when the two SP have a different dependence 
from the spectral parameter. 

In this paper, we follow the well known procedure introduced by Ablowitz et a1 
(1974) for the SP (1.2) and construct in § 2 the recursion operator associated with the 
SP (1.1) for vanishing potentials. Section 3 is devoted to the presentation of the four 
different T matrices which transform 4 into $L In correspondence with them we get 
the relation between the corresponding spectral parameters (p ,  A )  and fields 
((U, U), ( q ,  r ) ) ,  i.e. the generalised Miura transformations (GMT). By composing the 
GMT we are able to get a set of BT for the SP (1.1) and for the S P  (1.2), among which 
one finds the elementary BT (EBT) (Calogero and Degasperis 1984). We use then the 
GMT to get new solutions to the N E E  associated with the SP (1.1). 

Finally, in § 4 we prove, under some restrictive assumptions on the relation between 
A and p, the complete equivalence of the two classes of N E E  associated with the S P  

(1.1) and (1.2) following the procedure introduced by Li et a1 (1986). 

2. Construction of the recursion operator for the SP (1.1) 

Given the S P  ( l . l ) ,  the associated N E E  are obtained by requiring the existence of a 
denumerable set of matrices V", m = 1 , 2 , .  . . , such that 

CL, = V"(q ,  r ;  A ) $  (2.1) 

U,-  V , " + [ U ,  V m ] = O  (2.2) 

and are given by 

where by [ A ,  E ]  we mean the usual matrix commutator AB - EA. 

the following form for V": 
Given the specific structure of U as a function of A (see ( l , l ) ) ,  we can propose 

Substituting ( 2 . 3 )  and U, given by (l . l) ,  into (2.2) and equating the coefficients of the 
various different powers of A to zero, we get a set of coupled ordinary differential 
equations of first order for the set of coefficients (aZJ, d Z J ,  b Z J + ' ,  cZ'+', d2", d2") .  
Noticing that at  all levels ( j  = 1,2, . . . , m - 1) d Z J  = -azJ is always compatible and 
defining e'' = cZJ+'  - a2,  ( j  = 0, 1, . . . , m ) ,  these equations thus define the following 
recursive relation: 

where 

= (- - r - I r D  D - r + I q D  
+ - I r D  
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with ay4 constants. By D we denote just the operator of partial differentiation with 
respect to x and by I its inverse, i.e. the integral operator I = j' dy  defined on functions 
which go to zero somewhere on the x axis. Moreover we can set ci2'" = d2" = e'"' 
and thus it follows that 

is the whole class of N E E  associated with the S P  (1.1) for vanishing potentials. 

q, = 2 a 0 (  -qY, - 3q,r + 3qq, - q3  - 3qrz+6q2r ) ,  + 2 a 2 (  q, - q'+ 2 q r ) ,  - 2 a 4 q ,  

r, = 2 a o (  - r x ,  - 3qr, + 3rr, - r' - 3q2r  + 6qr2) ,  + 2 a 2 (  - r r  + r2 - 2qr ) ,  - 2 a 4 r x  

for rn = 3. 

class of N E E  has been presented for the first time by Ablowitz er a1 (1974): 

The first elements of this hierarchy ( 2 . 6 )  are 

As far as the zs S P  (1.2) is concerned, the recursion operator and thus the associated 

- D + ~ u I v  -2uIu 
M = (  

~ U I V  D - ~ v I u  

3. GMT and their composition 

(2 .7 )  

2.8) 

Let us require the existence of a gauge transformation T between the wavefunctions 
i+b and 4 of the SP (1.1) and ( 1 . 2 ) ,  i.e. 

* =  T4 (3.1) 
where T shall be a matrix function of rank 2 depending, in a way to be determined, 
on the set of fields (( q, r ) ,  ( U ,  U ) )  and linearly on the spectral parameters A and  p. The 
compatibility of (3.1) with (1.1) and  (1.2) gives us a n  equation for the 
matrix T :  

( 3 . 2 )  
Under the hypothesis of a quadratic dependence of p on A equation (3.2) can, due 
to the arbitrariness of A, be solved for T to give the following four different solutions: 

T,= U ( q ,  r ;  A ) T -  T W ( u ,  U ;  p ) .  

for p = y -$A2, where the function K is defined by 

and y and 6 are arbitrary constants; 

K ,  = ( r  - q - 2 i y ) K  

(3 .4)  

(3.5) 
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where now ,u = y + $ A  ', the function k is defined by ky = ( r - q + 2iy)  k and s' is an  
arbitrary constant. 

Corresponding to the transformation matrix (3.3) we have the following GMT: 

Chen Deng-yuan, D Levi and Li Yi-shen 

U = - q K  v = - r / K  (3.8) 

which allows us to rewrite (3.5) in this case in the following way: 

5, = -ut '  t U - 2 i y ~  K = E. (3.9) 

Equation (3.9) is nothing but the equation defining the intermediate wavefunction 6 
of the zs SP (1.2) in terms of the matrix wavefunction 

(3.10) 

corresponding to k = i y and where 6 is just an arbitrary constant depending on the 
normalisation condition for the function ( (Levi er a1 1984b). In such a way the GMT 

(3.8) can be inverted, obtaining (4, r )  in terms of (U, U )  

4 = -U/( r = -c(. (3.1 1) 

This result has already been obtained by Levi et a1 (1984a). Corresponding to the 
transformation (3.4) we obtain 

u = 6 / K  u = ( q y  + q r ) K /  6. (3.12) 

Taking into account the intermediate wavefunction ( we can invert the G M T  (3.12) to 
obtain 

q = c€ r =  v€-t ' , /c+2iy.  (3.13) 

Corresponding to the transformation matrix (3.6) we have - 
t' = -qk U = - r /  K .  (3.14) 

This GMT allows us, in this case, to identify k with the inverse of (, i.e. k = 116, and  
thus to obtain the inverse GMT 

q = -U[ r = -U/(. (3.15) 

Finally the transformation (3.7) corresponds to the G M T  

U = $ / € ?  v = ( q r + q r ) k / 6 :  (3.16) 

Taking into account the intermediate wavefunction 6, the inverse of the G M T  (3.16) is 

(3.17) 

Our first comment on the G M T  obtained here and their inverse is that, while equations 
(3.8), (3.1 11, (3.14) and  (3.15) give asymptotically vanishing potentials from asymptoti- 
cally vanishing potentials, the remaining G M T  transform vanishing potentials into 
potentia!s which go asymptotically at least to a constant value. I f  we set y = 0 then 
K and K are proportional and the number of different G M T  reduces. 

9 = U/( r = U/( - U,/ U - 2iy. 
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The transformations q ( j  = 1 , .  . . , 4) can be combined to obtain BT for the NEE 

associated with the SP (1.1) and (1.2). If we write down a matrix D, such that D, = T;' T, 
then the matrix D, is a Darboux matrix corresponding to a BT for the NEE associated 
with the SP (1.2), i.e. a transformation which allows us to pass from a set of potentials 
( U ,  U )  to a new set of potentials, denoted by (U' ,  U'),  while if d, is such that fill = TIT-' 

J . '  
this is a Darboux matrix corresponding to the SP (1.1) (from (q ,  r )  to (q', r')) .  It 1s 

immediate :o verify that we can construct six a priori different Darboux matrices D, 
and 6,  and thus six a priori different BT for each SP. 

In appendix 1 we give the explicit expressions for the 12 different Darboux matrices 
with their associated BT. Here we just present the main results that can be derived 
from them. The Darboux matrices D2,  and D43 give rise to the well known EBT for 
the Z S S P  (1.2). These same EBT can be obtained by successive applications of the BT 

associated with the Darboux matrices D,, (resp. D 7 , )  and D4L (resp. D??) with an 
appropriate choice of the arbitrary constant coefficients 6 and 6. We notice that the 
Darboux matrices D,, and D,? correspond to an invariance property of the SP  (1.2) 
which corresponds to identifying, up to an explicit (yx)-dependent factor, U ( )  with U 

and U" with U ;  if moreover 6 = 6 then the two Darboux matrices are equal. I f  we set 
6 = -5 then we have the following identity: D4?(u, t', U') ,  u O )  = (1/6)DJ,'(u", uo, U ,  c )  
which implies that, in some way, the EBT are mutual inverses. 

In all cases, apart from a multiplicative A-dependent term, the Darboux matrices 
are all linear in p but asymptotically (in w )  singular matrices. Finally we notice that, 
while the Darboux matrices D2,  and D,, connect different solutions of the same S P  

(1.2), the other four Darboux matrices start from a S P  (1.2) corresponding to the 
eigenvalue p to go over to the SP  ( 1  2 )  corresponding to the eigenvalue p o =  2 y  - p. 

As for the BT associated with the S P  (1.1) it is worthwhile noticing that &, fi4,, 
and 

All the BT give explicitly the new solution in terms of the old one without the 
necessity of solving any differential equation. Moreover, by applying in succession 
6,, and dl1 we obtain the same result as 6:. 

The GMT (3.8) and (3.11) has been used previously (Levi et a1 1984a) to obtain 
explicit solutions of the NEE associated with the SP (1.1). Now, we apply the GMT 

(3.12) and  (3.13) to obtain new solutions for the NEE associated with the SP (1.1) in 
terms of those of the zs SP. Using the knowledge of the solution of the zs se correspond- 
ing to N solitons over a generic background potential, as expressed in terms of the 
intermediate wavefunction 5 (3.10) of the background potential calculated at the 
position of the N poles of the transmission coefficient, the corresponding solution of 
the SP (1.1) can be immediately evaluated. Instead of presenting the general formula, 
easily reconstructed following, for example, the works of Neugebauer (see Levi er a1 
1984a and references therein), we just give the explicit formulae corresponding to a 
soliton over a zero background. 

I f  we take for U and U the zero solution, (3.13) is trivial; for U = O  and U = uo 
constant then r and q differ only by a complex constant r - q = 2iy and 

d,, give the same BT. 

00 

= iu0/2y + c ezlyx 

To have a real solution y must be purely imaginary and thus q goes asymptotically 
on one side to zero and on the other to -2iy. For ( U ,  U )  being the one-soliton solution, 
the formulae for (q ,  r )  already become quite involved (see appendix 2) but preserve 
the property of going asymptotically to a constant value for a generic value of y. 
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4. Equivalence of the two classes of NEE 

We would like to prove here that the GMT (3.8), (3.12), (3.14) and (3.16) together with 
their inverses (3.11), (3.13), (3.15) and (3.17) transform any solution of the N E E  

associated with the ZSSP (1.2) into a solution of the NEE associated with the SP (1.1). 
First of all it is easy to prove by direct inspection that, if we apply any of the GMT 

with y # 0 we cannot obtain a NEE of the class (2.6) from one of the class (2.8). So, 
in the following, choosing y = 0, we shall write down an operator S such that 

S L = E M S  (4.3) 

for each of the four GMT given in § 3, where E can take the values i l  according to 
the GMT studied and L and M are the recursion operators for the two hierarchies of 
NEE,  given respectively by (2.5) and (2.7). 

Given the operator S it is trivial to prove that if (9, r )  is a set of solutions of the 
NEE (2.6) then the (U, U), defined through the corresponding GMT, is a solution of the 
NEE (2.8) with a2' = ~ ' - " ' + l p ~ '  and vice versa (due to the invertibility of all the GMT 

and the matrices S studied). 
For the GMT (3.8) equations (4.1)-(4.3) define 

= ( K ( q -  r / K  D l  ( l / K ) ( r - - D )  

with E = 1; for the GMT (3.16) 

with E = -1; for the GMT (3.14) 

( l / E ) ( r - D ) )  

k q  
with E = -1  and finally for the GMT (3.12) 

( K / 8 Dz + r D  - qx - qr); -( K /  S )( qD + qx + qr) S = (  
- S / K ;  - S / K  

with E = 1. 
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Appendix 1 

In the following we just write down one after the other the 12 matrices D,, and d,, 
together with their corresponding BT: 

0 0  D ~ , ( u ,  V ;  U , U ; A, p )  = -- 

U'= - ( u . ~  + 2 i y u ) / s  + u'u0/6' 
U: = 2iyu'- u(uo)2/S+ su PO=P 

s" e-4iYx/5; - s" e -4i yx 

U -2ip + 2i y - U / & ;  

e 2i yx 

D ~ , ( u , u ; u  , U  ; A , p ) = y  0 0  

I D,,(u,v;u 0 0  , ~ ; A , p ) = r  

U: = -2iyuO- u(uo) ' /d+gu { U'= -(ux - 2 i y u ) / i +  uou2 / i2  WO = p 

S - q ( K o / K )  A q ( K o / K )  
- A ( K o / K )  A 2 ( K o / K )  

&(q, r;  qo, ro; A )  = - 

qo= - r  
A O = A  { ro = -9 - rx/ r 
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exp[ -2i( y - i A  l /  2)x] 0; -iAS 
&( q, r ;  qo, ro; A = - 6A K ( - A K K o ;  q K K ' - 6  

exp[-2i( y - ih2/2)x]  
AK fi41(q, r ;  qo ,  ro; A )  = - 

qo= -4 
A'= i A  

ro= - r - q , / q  

exp[-2i(y -iA2/2)x] 
6A K f i42(qr r ;  q", ro;  A = - 

q" = - r  
A ' = A .  

ro = -q - r,/ r 

The one-soliton solution of the zs SP is 

2V( t )  exp( -2iA2x) 
u(x, 1 )  = - 

D(x, t )  

where, if the solution is to be bounded, we have to require Im A I  > 0, Im A , < O ;  v, V ,  
o are functions whose time dependence depends on the NEE in the hierarchy one is 
choosing and 

The corresponding intermediate wavefunction 5 is given by 

w ( t )  exp( -2iyx)[ ( A 2  - y)D(x, t )  + h I - A2]  - V (  1) exp( -2iA,x) 
A 2  - A I + ( A  - y)D(x,  f ) + w (  t )  v( t )  exp[2i(A, - y)x]  

& = - i  
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and thus 

r ( x ,  t ) = 2 q ( x ,  t)-2i D b ,  1 1 0 2 -  Y H A ,  - Y) 
A 2  - A, + ( A ,  - y ) D ( x ,  t )  + U (  t )  Y( t )  exp[2i( A, - y ) x ]  

2i Y( f ) w (  t )  exp[fi(A, - y ) x ] [ A ,  - A 2 +  ( A 2 -  y ) D ( x ,  t ) ]  - (1 - D ) ( A ,  - A2)’ ( A 2 - A l + ( A l  - y ) D ( x ,  t ) + w ( t ) v ( t )  exp[2i(A, - y ) x ]  D 
q ( x ,  t )  = -- 

q ( x ,  t )  shall be vanishing asymptotically only if Im A , <  Im y <  Im A ,  and r is going 
asymptotically to constant values. 
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